中国科学院霍朝辉副研究员学术报告


题目:Well-posedness for the initial boundary problem of the derivative nonlinear Schr\"odinger equation on the half-line and the inviscid limit behavior of the one-dimensional Ginzburg-Landau equatio

报告人:霍朝辉(副研究员、中国科学院数学与系统科学研究院)

时间:2021年11月24日(周三),下午14:00-17:00

地点: 腾讯会议ID: 539 329 016


摘要: Global well-posedness of the initial boundary of the derivative nonlinear Schr\"odinger equation on the half-line with initial data satisfying $ \|u_0\|_{L^2}<\sqrt{2\pi}$ $$u_{t}-iu_{xx}=(|u|^{2}u)_{x}, \ \ x\geq0$$ is considered.


Moreover, the inviscid limit behavior of the one-dimensional Ginzburg-Landau(GGL) equation on the half-line $$u_{t}-(\varepsilon +i)u_{xx} +(|u|^{2}u)_{x}=0, \ \ \varepsilon>0, \ x\geq 0 $$ can be considered. If $ \varepsilon \rightarrow 0$, the solution of the generalized Ginzburg-Landau(GGL) equation on the half-line converges the solution of the Schr\"{o}dinger equations with derivative on the half-line.