美国匹兹堡大学陈明教授学术报告
题目:Non-uniqueness for the isentropic Euler system
时间:2021.10.30 (星期六) 9:00-10:00
地点:腾讯会议(会议ID:780 7596 4755)
报告人:陈明(Ming Chen)教授,美国匹兹堡大学
摘要:
We consider global weak solutions to the compressible isentropic Euler system satisfying an additional global energy inequality. Using a generalization of a key step of the convex integration method developed by De Lillis-Szekelyhidi, we show that in dimension 2 and 3, for any initial datum from a dense subset of the energy space, there exist infinitely many global-in-time admissible weak solutions. This is a joint work with A. Vasseur and C. Yu.
欢迎广大师生参加!
个人简介:陈明教授,在美国布朗大学数学系获得博士学位,师从国际著名数学家Walter Strauss教授,目前在美国匹兹堡大学数学系任教。主要从事偏微分方程的稳定性理论及非线性波等问题的研究,已取得一系列国际领先的重要成果,发表在“Math Ann.”、“Comm. Math. Phys.”、“J. Funct. Anal.”、“Proc. R. Soc. Lond. Ser. A”、“Trans. Amer. Math. Soc.”、“Comm. Partial Differential Equations”、“Indiana U. J. Math”、“J. Nonlinear Sci.”等国际著名学术期刊上。