湖南大学李圆博士学术报告


时间:2021.9.29(周三)8:40-11:00

地点:腾讯会议(ID:310 263 243)

题目:Partial regularity and Liouville theorems for stable solutions of anisotropic Liouville equation

报告人:李圆(湖南大学,在读博士)

报告人简介:李圆,男,湖南大学在读博士,2019年-2020年受国家留学基金委资助到德克萨斯大学圣安东尼奥分校(UTSA)访问,主要从事偏微分方程理论研究。在Discrete Contin. Dyn. Syst.等SCI期刊上发表论文多篇。



云南师范大学顾光泽博士学术报告


时间:2021.10.15(周五)14:10-16:30

地点:腾讯会议(ID:517 256 375)

题目:Uniqueness of positive solutions for fractional Kirchhoff equation

报告人:顾光泽博士(云南师范大学)

摘要:In this talk, we introduce a new technique to study Kirchhoff type problems and obtain the existence of positive solutions and infinitely many (sign-changing) solutions to fractional Kirchhoff equation. Our arguments are quite different from the direct variational methods and do not depend on the A-R type condition. We do not need to restrict $s$ on the range $\frac{N}{4}<s<1$, either. Based on our simple but powerful

method, we can conclude the uniqueness of positive solutions of fractional Kirchhoff equation with power nonlinearities, and deal with the so-called degenerate case $a=0$ which has been rarely studied.

报告人简介:顾光泽,云南师范大学学院讲师。2014年获云南师范大学数学与应用数学学士学位;2017年获云南师范大学基础数学硕士学位;2018年受国家留学基金委资助到德克萨斯大学圣安东尼奥分校(UTSA)访问两年;2017.09-2020.12中南大学数学博士研究生。主要研究领域:非线性偏微分方程。在Int. Math. Res. Not.、Adv. Nonlinear Stud.、Commun. Pure Appl. Anal.、 Ann. Mat. Pura Appl.、J. Math. Phys.、中国科学等杂志发表论文10篇。